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We develop an analytical model to describe the generation of vapour as water moves 
through a hot porous rock, as occurs in hot, geothermal reservoirs. Typically the 
isotherms in the liquid lag behind the water-vapour interface and so water is supplied 
to the interface at the interface temperature. This temperature is lower than that in the 
rock far ahead of the interface. Therefore, as the hot porous rock is invaded with water, 
it cools and the heat released is used to vaporize some of the water. At low injection 
rates, vapour formed from the injected liquid may readily move ahead of the advancing 
liquid-vapour interface and so the interfacial pressure remains close to that in the far 
field ahead of the interface. The mass fraction that vaporizes is then limited by the 
superheat of the rock. For larger injection rates, the interfacial vapour pressure 
becomes considerably greater than that in the far field in order to drive the vapour 
ahead of the moving interface. As a result, the interfacial temperature increases. The 
associated reduction in the thermal energy available for vaporization results in a 
decrease in the mass fraction of vapour produced. 

Since the vapour is compressible, the motion of the vapour ahead of the interface is 
governed by a nonlinear diffusion equation. Therefore, the geometry of injection has 
an important effect upon the mass fraction of water that vaporizes. We show that with 
a constant supply of water from (i) a point source, the mass fraction of water which 
vaporizes increases towards the maximum permitted by the superheat of the rock; (ii) 
a line source, a similarity solution exists in which the mass fraction vaporizing is 
constant ; and (iii) a planar source, the liquid-vapour interface steadily translates 
through the rock with a very small fraction of the injected water vaporizing. 

1. Introduction 
Geothermal reservoirs are typically located near regions of volcanic or tectonic 

activity, and lie at depths of up to several kilometres below the Earth's surface; they 
consist of hot, fractured rock and sediment whose interstices are saturated with fluid 
(Elder 1981; Wohletz & Heiken 1992). The hottest geothermal reservoirs may have 
temperatures as high as 200-300 "C. In such reservoirs, the fluid is typically in the 
vapour phase with pressures in the range 1-30 atmospheres (Elder 1981 ; Pruess et al. 
1987). Interest in such reservoirs stems from their potential to generate power by 
drawing off the vapour along wells in order to drive turbines (DiPippo 1980). Power 
plants have been installed at several reservoirs, including the Geysers reservoir in 
California and the Lardarello field in Italy (Elder 1981 ; Grant, Donaldson & Bixley 
1982). As vapour is extracted from such reservoirs, the mass of vapour and hence 
pressure in the reservoir decreases (Enedy 1989); this causes a reduction in the rate of 
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FIGURE 1. Schematic of a geothermal reservoir, bounded between two layers of impermeable rock. 
Water injected into the left-hand well bore advances into the rock, with vapour forming at the leading 
edge. This vapour may subsequently be extracted from the extraction well on the right-hand side. 

extraction of vapour and hence power production. However, this vapour can be 
regenerated : if the reservoir temperature increases with depth sufficiently rapidly then 
a gravitationally stable layer of liquid may form above the high-pressure vapour region 
(Schubert & Straus 1980). In such a situation, as the vapour pressure decreases, the 
liquid-vapour interface descends into the reservoir. This causes some vaporization and 
a concomitant increase in the vapour pressure. However, natural recharge of vapour 
is usually insufficient to maintain the reservoir pressure (Kerr 1991). Therefore, at 
several geothermal reservoirs, cold water is actively injected into the reservoir through 
well bores (figure 1) (Elder 1981 ; Pruess el al. 1987). As this injected liquid moves into 
the hot rock, a fraction of the liquid vaporizes. 

The mechanism by which relatively cold liquid vaporizes as it invades a hot, 
permeable rock is therefore an important and fundamental process, of interest for both 
the natural and forced recharge of geothermal reservoirs: the purpose of this paper is 
to expose the underlying physical processes which control such vaporization. In 
particular, we investigate how the heat transfer between the hot rock and the water is 
coupled to the dynamics by which the newly formed vapour can migrate ahead of the 
liquid-vapour interface. We use this model to determine how the vaporization process 
depends upon the rate of supply of water, the geometry of the source of water and the 
intrinsic properties of the reservoir. 

In the first part of the paper, we analyse the heat transfer as cold water migrates 
through a hot rock and establish conditions under which the effects of thermal 
diffusion may be neglected; following Bodvarsson (1972) we show that in a porous 
rock the isotherm speed is smaller than the interstitial liquid velocity because the fluid 
only migrates through the pores whereas the heat must migrate through both the pores 
and the solid matrix. We extend this result to show that even if some of the liquid 
vaporizes, the isotherms still lag behind the liquid-vapour interface ; we deduce that the 
liquid is supplied to the vaporizing interface at the interface temperature. 

In the second part of the paper, we use these results to derive a new model of a 
moving vaporization front invading a hot porous rock. Pruess et al. (1987) presented 
a simpler linearized model of such a front and derived a quasi-linear similarity solution 
describing the growth of a circular front in a porous layer. Using this solution, they 
recognized that as the flow rate increases, the rate of vapour production decreases. We 
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generalize the analysis to investigate the role of the geometry and rate of injection upon 
the production of vapour. We present a family of nonlinear similarity solutions 
describing the vaporization which ensues when water is injected at suitable rates from 
point, line and planar sources. We also present some numerical calculations which 
describe the time-dependent generation of vapour and motion of the liquid-vapour 
interface resulting from the steady injection of water from a point, line or planar 
source. We compare these numerical solutions with some asymptotic solutions, which 
are valid at long times. We conclude with a brief discussion of the implications of our 
results in the context of geothermal reservoirs. 

2. Advection and diffusion of isotherms in a hot permeable rock 
We consider the migration of water through a hot permeable rock of uniform 

porosity # (# < 1) and permeability k. In this section we consider the isothermal host 
rock to be saturated with water, so that there is no phase change at the leading edge 
of the injected water (figure 2a). We generalize this analysis in $3, where we consider 
the host rock to be vapour saturated (figure 2b). In the water-saturated region, the 
conservation of mass may be simply expressed as 

3 P W  #--+V.(up,) at = 0, 

where pw is the density of the water and u is the Darcy velocity, defined as the volume 
flux per unit area of rock. The water actually migrates through the rock with an 
interstitial velocity u/#. 

If the water percolates through the rock sufficiently slowly then the rock and the fluid 
are in local thermodynamic equilibrium. As a result, the conservation of energy is most 
easily expressed in terms of the change in enthalpy, KO, associated with a given 
control volume due to the net heat transfer, by both advection and diffusion, through 
the surfaces of the control volume 

+ v - (up, c,, e = v . ( m e ) ,  
at 

where C,, and C,, are the specific heats of the water and rock, 
- 
PC, = #Pw c,, + (1 - $1 P P  cp,, (3) 

R = $K,+(1 -#)& (4) 

K,  and K,  are the thermal conductivities of the water and rock and we adopt the 
approximation 

for the mean conductivity (Batchelor 1974; Dullien 1992). Ignoring variations in the 
specific heat C,, with temperature, we may combine (1) and (2) to obtain an equation 
describing the evolution of the temperature field in the rock 

In the absence of diffusion, the ratio, A, of the velocity of surfaces of constant 
temperature u, to the actual velocity of the fluid (u /# )  is given by 
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FIGURE 2. Schematic showing the migration of isotherms through a permeable rock as it is invaded 
with water in the case of (a) no vaporization, and (b) vaporization from an advancing interface. 

Since A < 1, the rate of migration of the isotherms is smaller than that of fluid parcels, 
which propagate at a rate u/# .  We deduce that if thermal diffusion is unimportant, 
then the water just behind the leading front of injected water will have the same 
temperature as the front (Bodvarsson 1972). Essentially, the fluid loses memory of its 
initial temperature since it travels faster than the isotherms and so is heated up by the 
surrounding rock (figure 2a). 

2.1. Eflects of thermal diflusion 
We may ignore the effects of thermal diffusion at the leading edge of the new liquid, 
r(t) ,  if the advective heat flux far exceeds the diffusive heat flux, 

where K = K/pC,. Suppose the water is supplied from a symmetric source in n 
dimensions, such that the volume flow rate (per unit area or length for one- or two- 
dimensional sources) is (B+ 1) A ,  tp. Then, the leading edge of the newly input liquid, 

h i T / K #  % 1 ,  (7) 
- -  
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where S ,  = 1, 2% or 4n for one-, two- or three-dimensional sources (n = 1,2 or 3). 
Substituting this expression for r(t)  into (7) gives an expression for the conditions under 
which thermal diffusion is negligible : 

There are three different situations in which condition (9) holds; these depend upon the 
rate of injection (8) and the geometry of injection (n).  

First, if 2(/3+ 1) > n, then (9) holds in the long-time limit 

t 9 7, (104 

where 

Thus, after a sufficiently long time the effects of thermal diffusion become unimportant. 
This case includes the steady injection of water from a planar source (n = 1). For 
example, with typical steady injection rates m/s, thermal diffusion 
plays no role in determining the interfacial temperature after a time t - 1-10, s, and the 
fluid is supplied to the interface at the interfacial temperature (equation (6)). 

In the second situation, 2(/3+ 1) = n, the rate of advance of the injected fluid front 
is directly proportional to the rate of diffusion of the isotherms. In this case the effects 
of thermal diffusion are only important in a region of size d, - ( ~ t ) f  near the source, 
while the interface is located a distance df - (nA,)'l"$ from the source. Therefore, 
df 9 d, if 

< A ,  < 

in which case the rate of diffusion of isotherms is much smaller than the rate of advance 
of the interface and thermal diffusion plays no role in determining the interface 
temperature. For example, in typical, steady two-dimensional injection (n = 2) into a 
geothermal reservoir, < A, < m*/s. Therefore d, - ( 10-2-10-1) df and ther- 
mal diffusion is indeed negligible. 

In the third situation, 2(/3+ 1) < n, condition (9) only holds in the short-time limit 
t < 7. For typical steady injection from a point source (n = 3), lo-' < A, < lo-, m3/s 
and so 7 - 1017-1019 s. This is beyond the typical timescale of interest for a geothermal 
reservoir and again it is valid to neglect diffusion. 

3. The fluid-vapour interface 
When the host rock is vapour saturated rather than liquid saturated, and the input 

fluid is relatively cold, some of the liquid supplied to the advancing liquid-vapour 
interface vaporizes. Therefore, the interface moves less rapidly than the liquid because 
of mass transfer across the interface (figure 2b). We must therefore show that the 
interface still propagates faster than the isotherms, so that the fluid arrives at the 
interface at the interface temperature. For simplicity, in order to elucidate some of the 
fundamental controls upon the rate of phase change we assume that the interface 
remains planar (Pruess et al. 1987). 

Let us denote the rate of advance of the fluid interface as uR/# where R < 1. We 
deduce that a fraction 1 - R of the fluid which is supplied to the interface actually 
vaporizes. Owing to the thermal inertia of the rock ($2) this vapour migrating ahead 
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of the liquid-vapour interface heats up to the far-field temperature of the rock, T, say, 
irrespective of the interfacial temperature. Let us suppose that liquid of temperature & 
is supplied to the interface, of temperature I;, where & < T.  Then, in steady state, as 
the rock is invaded with fluid, the heat released by the rock as it cools from the far-field 
temperature to that at the interface is used to heat the liquid to the interface 
temperature, to vaporize a fraction 1 - R of this liquid and then to heat up this new 
vapour to the temperature of the far field: 

$ p w ( T -  &) + -R)~w(hvm-Cpw T )  = R( l -$ )pr  Cpr(T,- I;)* ( 1 2 ~ )  
Here h,, denotes the enthalpy of the vapour in the far field, C ,  denotes the specific heat 
and p the density. 

We can rearrange the Stefan condition ( 1  2 a)  to show that 

Combining equations (3), (6b) and (12b) it follows that R > A because h,, includes 
the latent heat of vaporization and therefore exceeds C,, T, so that 

(13) 
We deduce that the liquid-vapour interface migrates faster than the isotherms. 
Therefore, as in $2, in the absence of thermal diffusion, the fluid will be supplied to the 
liquid-vapour interface with the interface temperature, & = q, and the Stefan 
condition ( 12) becomes 

(hvm - c,, TI > C,,(T, - TI. 

$ ( I -  R )  pw(hvm - Cpw TI = R(1-  4) ~r Cpr(T, - '4)- (14) 
As a result, the initial temperature at which the fluid is input into the rock has no effect 
upon the rate of vaporization. 

3 . 1 .  Effects of thermal diffusion 
As in $2, there are three distinct situations in which thermal diffusion may be neglected, 
depending upon the rate and geometry of injection. Although in each situation the 
mass fraction of the input liquid that vaporises, 1 - R,  may change with time, in $6, we 
show that it asymptotes to a constant value. However, in geothermal systems, even 
during the transient stage, R > 0.1 ($4), and so by assuming that the system has 
asymptoted to this constant value, we can estimate the times for which thermal 
diffusion is unimportant. 

In the first case, 2(p+ 1) > n, the lengthscale of the liquid-filled region becomes 
r(t) = ((nA,,/S,)  Rt(fl+'))'l" and so thermal diffusion ceases to be important for times 

, ( 1 5 )  
where 7 is defined in ( l o b ) .  In the next section, we show that under typical conditions 
in geothermal systems, R 2 0.1, and so condition ( 1 5 )  is typically satisfied for 
t 9 0(102-104 s) for steady injection from a planar source. 

In the second case, 2 ( p +  1) = n,  the condition that thermal diffusion does not affect 
the interfacial temperature becomes 

t 9 7R-2/(2(fl+1)-n) 

For steady injection from a line source (n = 2) with typical injection rates 
A, - 10-4-10-3 m2/s condition (16) holds. 
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In the third case, 2(p+ 1) < n, effects due to thermal diffusion may only be neglected 
for times 

(17) 

Again adopting the typical rates of injection used in 92, for injection at a steady rate 
from a point source thermal diffusion is negligible for t << 10'5-1017 s. 

3.2. The Clausius-Clapeyron relation 
We assume that the fluid and vapour are in thermodynamic equilibrium at the 
liquid-vapour interface and neglect any effects of surface tension. Thus the interfacial 
pressure and temperature are related by the Clausius-Clapeyron equation, which has 
the empirical form 

(Haywood 1972) in the temperature range 150 < T < 240 "C, where T and P represent 
the temperature and pressure in SI units. By combining (14) and (18) we may calculate 
the flux of vapour produced at the interface as a function of the interfacial pressure. 
We now present a model describing the motion of the vapour ahead of the interface; 
this provides a second relationship between the interfacial pressure and the vapour flux 
migrating ahead of the interface, thereby completing the mathematical model of this 
phase-change interface. 

t << 7R-2 / ( ' (P+1) -n ) .  

T,,,(P) = 6.7P0.'3 (18) 

4. The vapour region 
Darcy's law 

,UU = - k V P  

describes the velocity v of the vapour as a function of the applied pressure gradient V P  
when the interstitial Reynolds number is small (Dagan 1989; Pruess et al. 1987; Dullien 
1992). Here ,LL represents the dynamic viscosity of the vapour and k the permeability. 
For vapour flow through porous rocks, the pore Reynolds number Re = pud/p - u for 
a typical pore size of d - m; in this case, our theory is valid for vapour which 
migrates at a rate u < 0.1 m/s. The conservation of mass within the vapour region is 
given by 

where pv is the vapour density. Finally, the equation of state relates the density p,,, 
temperature 0 and pressure P of the vapour: 

where R, is the gas constant for vapour (Young 1988). 
We may combine (19)-(21) to obtain the nonlinear equation 

(;)t--&v.(;(vP)) k = 0. 

According to this equation, the similarity lengthscale L over which changes occur in 
time t is given by L - ( ( k P / d p )  t);. In geothermal systems, this is typically much larger 
than the similarity lengthscale of thermal diffusion (Kt) ; ,  where K is the thermal 
diffusion coefficient, since ( (kP /$p)  ( 1  / ~ ) ) f  - 10'. Therefore, the temperature field 
within the vapour region adjusts to the far-field vapour temperature through thermal 
conduction across a very narrow thermal boundary layer near the interface; 
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FIGURE 3. Schematic of the vaporization front, showing the temperatures ahead of and behind the 
interface. Thick solid line shows the path followed by fluid from the point of  injection to the far field 
of the reservoir. 

furthermore, according to (22), the pressure remains nearly constant across this 
boundary layer (figure 3) .  Beyond this narrow boundary layer, the vapour attains the 
far-field temperature and so the pressure distribution ahead of the interface is governed 
by the isothermal equation 

_-- a p  v - ( P V P )  = 0. 
at $P 

Since the thermal boundary layer ahead of the interface is very thin, the change in the 
heat content of the boundary layer as it expands is several orders of magnitude smaller 
than the heat transferred through the interface by the vapour; therefore, even in a 
system evolving with time, to leading order, the conservation of enthalpy across the 
interface and thermal boundary layer is indeed given by (1 26). 

4.1. Similarity solutions 
Since the vapour is compressible, it is driven away from the interface diffusively 
(equation (23)). For convenience we define a reference diffusion coefficient 
a = k(f,,(T,)- Pm)/q5,u, where P,,,(T) is the saturation pressure at temperature T. If 
vapour is generated at an appropriate rate by the advancing liquid front, then a self- 
similar vapour distribution develops ahead of the interface, r = ~(2at ) f ,  where the 
dimensionless similarity variable is 7 = r/(2at)3. For injection from an n-dimensional 
axisymmetric source, such similarity solutions arise if the fluid is injected into the rock 
at a rate proportional to PI2-', and if a constant fraction, 1-R say, of the water 
vaporizes. In n-dimensions, equation (23 )  then simplifies to the dimensionless form 

- YP,, = [ ( P l  +P) (7n-1P7)1q, (24) 

where the dimensionless pressure p is defined by the expression 

and p ,  is the dimensionless background pressure p 1  = f',/(<at(T,)- P,). 
p = p, +P(p,,,(T,) - P,) 
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Stefan number 
FIGURE 4. The maximum mass fraction vaporized as a function of the reservoir Stefan number 

for several values of porosity. Typical reservoir Stefan numbers are in the range 10-'-1O8. 

We solve (24) subject to the constraint of zero motion in the far field, 

p + O  as 1;1+00, (26) 
and use conservation of mass and enthalpy at the liquid-vapour interface, 11 = x ,  

and 

where the Stefan number 

represents the ratio of the heat of vaporization at the far-field temperature to the heat 
required to increase the temperature of the liquid from T,,(P,) to T,, and 
f = (q-  qat(Pa))/( T, - qat(Pa)) represents the dimensionless interfacial temperature. 
We also assume that the interfacial temperature cannot exceed that of the far field. 
Therefore, 0 < p i  < 1. 

Equation (28) shows that the mass fraction vaporized, (1 - R), has an upper bound, 
(1 - &), which occurs when the interfacial pressure equals that of the far field, and the 
rock releases the maximum thermal energy for vaporization (i.e. pi  = 0 and f = 0). 
Also, the mass fraction vaporized falls to zero when the interfacial temperature _equals 
the saturation temperature associated with the far-field pressure (i.e. p i  = 1 and T = 1). 
In figure 4, we show how the maximum mass fraction that may be vaporized (1 - R,) 
varies with Stefan number for three different value of the porosity. Note that for low 
injection rates, thermal diffusion in the liquid region becomes important ($3) and the 
problem is more complex. 

The interfacial pressure and hence the mass fraction vaporizing are functions of 
several dimensionless parameters. These include the dimensionless rate of supply of 
fluid to the interface, x 2 / R  (for line source injection), the far-field pressure, ply  which 
imposes a lower bound upon the rate of diffusion of vapour away from the interface 
(equation (24)), and the Stefan number S. 
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5. A parametric study of injection similarity solutions 
We have solved equation (24) subject to the boundary conditions (18), (26) and (28) 

numerically to determine the dependence of the interfacial pressure and mass fraction 
vaporizing as a function of the three dimensionless parameters described above. We 
consider injection from an axisymmetric line source, which admits a similarity solution 
when the liquid is supplied at a constant rate. This allows us to identify and explain the 
controls exerted upon the rate of vaporization by these dimensionless parameters. 

5 . 1 .  The rate of supply of fluid to the interface, x 2 / R  
As the rate of injection increases, the mass fraction vaporized decreases and the 
interfacial pressure increases (figure 5 a, b). These results may be readily understood by 
considering the changes in the interfacial conditions with injection rate. For low 
injection rates, little vapour is produced, and therefore the interfacial pressure remains 
small, pi - 0. As a result, the mass fraction vaporizing is a maximum since the 
maximum amount of thermal energy available for vaporization is released from the 
rock as it is invaded by the liquid and cools. However, as the rate of supply of fluid to 
the interface increases, the interfacial pressure increases in order to drive the vapour 
ahead of the moving liquid front (figure 5 b). As a result, the interfacial temperature 
increases, (1 8), and the heat transfer available for vaporization decreases. Therefore, 
the mass fraction that vaporizes decreases with injection rate. However, the total 
amount of vapour produced per unit time continues to increase with increasing flow 
rate (figure 5 c ) ;  the increase in the interfacial pressure simply means that the efficiency 
of vapour production, defined as the amount of vapour produced per unit mass of 
liquid injected, is reduced (figure 5a). 

As the porosity of the host rock increases, the mass fraction vaporized decreases 
since there is less energy available per unit mass of injected fluid. The main effect is that 
with a higher porosity, more fluid is present per unit volume. 

5.2. The reservoir pressure 
The effective diffusion coefficient within the vapour region (24) is dependent upon the 
far-field pressure, p l ,  as well as the dynamic pressure within the moving injected 
vapour, p. The typical range of values for p1 is 0.1 c p1 c 0.4, and by definition p lies 
in the range 0-1. As the rate of injection increases, the pressure p near the interface 
increases towards unity from zero and so the local diffusion coefficient close to the 
interface also increases. At low rates of injection the diffusion coefficient ( p + p l )  
asymptotes to the background pressure, p l ,  since p 1  > p .  However, at high rates of 
injection, the local diffusion coefficient close to the interface is dominated by the 
dynamic pressure p since p % p l .  This increase in the local diffusion coefficient, 
especially close to the interface, results in a higher mass fraction vaporizing than would 
be predicted from a model in which the diffusion coefficient is taken to be the constant 
p1 (figure 6, dashed line). Thus, the effect of the increase in the vapour diffusion 
coefficient with pressure upon the mass fraction vaporizing can be large. 

Pruess et al. (1987) approximated the diffusion coefficient (pl + p )  by the constant 
value t ( p ,  +pi), where pi  is the interfacial pressure. This quasi-linear solution is shown 
in figure 6 by the dot-dashed line. The approximate diffusion coefficient used by Pruess 
et al. (1987) is smaller than the true value near the interface. However, in the far field 
it is greater than the true value, and hence the Pruess model leads to the prediction of 
a greater mass fraction vaporizing. 
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FIGURE 5. Variation of (a) the mass fraction vaporized; (b) the interfacial pressure and (c) the total 
mass vaporized as a function of the dimensionless rate of supply of fluid to the interface, xP/R. Curves 
are given for three typical values of the rock porosity. 
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FIGURE 6. Variation of the mass fraction vaporized as a function of the rate of injection, x / R  for rock 
porosity 0.01. The full nonlinear solution is shown with a solid line, and the solution in which the 
diffusion coefficient (p+pl)  is replaced by the far-field pressure p ,  is shown with the dashed line. The 
quasi-linear approximation adopted by Pruess et al. is shown as the dot-dashed line. 
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FIGURE 7. (a) The mass fraction vaporized, (b) the interfacial pressure and (c) the total mass vaporized 
as a function of the reservoir Stefan number. Curves are given for several values of the porosity, and 
a dimensionless injection rate of 0.01. 

5.3. The Stefan number 
As the superheat, expressed by the parameter S, increases, the heat required for 
vaporization increases, thereby decreasing the mass fraction vaporized (figure 7 a)  and 
decreasing the interfacial pressure (figure 76). As a result, the total amount of vapour 
produced also decreases (figure 7 4 .  Note that increasing the Stefan number is 
equivalent to decreasing the superheat of the rock. 

6. Injection at point, line and planar sources 
We now consider the effect of injecting fluid from planar or point sources in 

comparison to that from a line source discussed above. In the similarity solutions, the 
fluid-vapour interface migrates at a rate r = 2 ~ ( a t $ ,  and so the fluid must be supplied 
to the interface with velocity & / a t  = X(a/t ) i /R.  Hence, for a similarity solution, with 
axisymmetric injection in n dimensions, the injection rate (per unit length or surface 
area) is of the form (figure 8a)  

In figure 8(6)  we show how the fraction of injected fluid that vaporizes varies as a 
function of the rate of supply of liquid to the interface per unit area, x / R ,  in each of 
these injection geometries. 

6.1. Planar source 
Equation (30) shows that in one dimension (n  = l ) ,  a self-similar vaporization front 
only develops if the flow rate is of the form Q - t d ,  essentially since the yapour diffuses 
ahead of the interface. If the liquid flux does not decay as fast as t - 3 ,  then the new 
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FIGURE 8. (a) The rate of injection of mass as a function of time for similarity solutions in one (i), 
two (ii) and three (iii) dimensions. (6) The mass fraction vaporized as a function of the rate of supply 
of fluid per unit area, x / R ,  for injection in one (i), two (ii) and three (iii) dimensions for rock of 
porosity 0.01. The horizontal dashed line represents the maximum mass fraction that may vaporize. 

vapour accumulates ahead of the interface, and the mass fraction of injected water 
which vaporizes decreases with time until very little of the input fluid actually 
vaporizes. For example, when the water is input at a constant rate, a steadily 
translating vaporization front develops in which only a very small fraction of the water 
vaporizes. For a steady input of water at a rate Q = ( U / R )  in which the interface 
advances at a rate U ,  and a mass fraction 1 - R vaporizes, equation (23) has solution 
P(5) where 6 = x- Ut and 

k 
- UP - -(PPc)5. 

- $P 

In a reservoir of large extent, P + P, as 5 -+ 00 and so 

-U(<-Pm) = -[Peli. k 
$P 
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Combining this with the equation of conservation of mass across the interface 
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where 6 ,  denotes that the temperature is evaluated in degrees Kelvin, we obtain the 
relation 

Combining this with (12a) and (18) we find the difference in temperature across the 
interface AT = T,- to be 

Our calculations suggest that 1 - R - in this steady solution. 

6.2. Point source 
In three-dimensional injection, the surface area available for vaporization increases 
rapidly with radius. In order that the fraction vaporizing remains constant with time, 
fluid must be injected at an ever increasing rate proportional to t;, so that the radius 
of the fluid region grows at a rate t-i to keep pace with the vapour, which diffuses ahead 
of the interface at a rate t-i. If the rate of input of fluid grows more slowly than ti then 
the fraction vaporizing tends to increase with time; this is because the pressure gradient 
required to remove the vapour from the interface decreases as the surface area 
increases, and so the interfacial pressure and hence temperature decrease, thereby 
releasing more energy for vaporization. In this case, thermal diffusion in the liquid 
eventually becomes important and the above solution breaks down. 

6.3. Numerical solutions 

In order to illustrate these effects we have solved the full, time-dependent nonlinear 
diffusion equations, for steady injection in one, two and three dimensions. We used a 
simple predictor-corrector algorithm (Ames 1977) for this integration, and checked the 
accuracy of the programme by comparing the numerical results with the similarity 
solutions. 

In figure 9, we present the numerical solution of the time-dependent diffusion 
equation, for steady injection from point, line and planar sources. Figure 9(a) shows 
the mass fraction vaporized as a function of time; figure 9(b )  shows the total mass of 
vapour produced as a function of time; figure 9(c)  shows the interfacial pressure as a 
function of time; and figure 9 ( d )  shows the radius of the region occupied by the liquid 
as a function of time. 

For injection of water from a point source, the interfacial pressure decreases towards 
that of the far field, since, as the surface area of the advancing fluid front increases, the 
vapour requires a much smaller pressure gradient to drive it away from the advancing 
interface ; as a result, the liquid fraction that can vaporize eventually becomes limited 
by the maximum heat that may be released by the rock as it is invaded by water and 
cools. After a time of the order 7 - Qg/a, the interfacial pressure asymptotes to the 
value pi - 0, and the mass fraction vaporized attains the maximum value ( 1  - R,) 
(figure 3). Beyond this time, the mass fraction that vaporizes is nearly constant, and so 
the radius of the region occupied by liquid increases as r - QiRif i .  This may be seen 
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FIGURE 9. Variation of (a) the mass fraction vaporized; (b)  total mass vaporized; (c) the interfacial 
pressure, and ( d )  the radius of the region occupied by liquid as a function of time, for injectipn,at a 
constant rate in one (i), two (ii) and three (iii) dimensions. The asymptotic scalings r - t ,  F,  r’ are 
shown as dotted lines. Rock porosity is 0.01 and rate of injection is 0.02. In the two and three 
dimensional calculations, the initial radius is r = 1 .O. 

in figure 9(d)  in which the numerical solution converges to the dashed asymptotic line 
(iii) r - ti. As shown in $3, thermal diffusion in the liquid region eventually becomes 
important as the interface slows down. The present asymptotic results only hold for 
times t such that thermal diffusion is unimportant (equation (17)). This requires 
t -g 1015-1017 s which is beyond the time of interest, and so it is valid to ignore such 
effects. 

In figure 9 (d), we also present a numerical calculation which shows that when liquid 
is injected in one dimension at a steady rate, the mass fraction steadily decreases 
because the vapour accumulates ahead of the interface. However, eventually, after a 
time of the order 7 - Q/a, a steadily translating vaporization front, (31)-(35), 
develops. 

7. Conclusions 
We have presented a new model which describes the generation of vapour following 

the injection of cold water into a hot rock of large extent. The isotherms in the water 
region lag behind the fluid front as long as the water is injected sufficiently fast so that 
thermal diffusion is unimportant. In this case the mass fraction of the injected water 
that can vaporize is independent of the injection temperature, and instead depends only 
upon the rate and geometry of injection. Owing to the compressibility of the vapour, 
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the vapour migrates ahead of the moving fluid front according to a nonlinear diffusion 
equation, in which the diffusivity increases linearly with the pressure. 

We have presented a number of new similarity solutions which describe the 
generation of vapour when water is supplied at a suitable rate from a point, line or 
planar source. These solutions show that at low flow rates, the mass fraction of vapour 
which may be produced from the injected fluid is limited by the thermal energy 
available in the hot rock, while at high flow rates it is limited by the rate at which the 
vapour can diffuse ahead of the fluid interface. Indeed, as the flow rate increases, a 
larger pressure gradient is required in the vapour ahead of the interface, in order that 
it can escape from the advancing liquid. This increases the interfacial temperature, and 
thereby reduces the thermal energy available to vaporize the fluid, causing a decrease 
in the mass fraction that can vaporize. With a larger background pressure, the vapour 
is able to diffuse ahead of the liquid-vapour interface more rapidly, thereby increasing 
the mass fraction of vapour produced. As the Stefan number of vaporization increases, 
the mass fraction vaporized decreases. 

Since the vapour diffuses ahead of the liquid-vapour front, the steady injection of 
water from an axisymmetric line source admits similarity solutions. However, with 
steady injection of water from a point source, the mass fraction vaporizing increases 
towards the maximum value given by the superheat of the rock; this is because the 
liquid-vapour interface advances more slowly than the rate at which vapour diffuses 
ahead of the interface. Finally, for steady injection from a planar source, vapour 
accumulates ahead of the liquid-vapour interface, causing a decrease in the mass 
fraction of liquid that can vaporize, until the system asymptotes towards a steadily 
translating liquid-vapour front, in which a very small constant fraction of the water 
vaporizes. 

This study has shown that the effect of injecting water into a hot rock at very high 
flow rates is to fill the rock with relatively hot water while producing a relatively small 
mass of vapour per unit mass injected. In contrast, by injecting the water at much lower 
flow rates, a much larger mass of vapour may be produced per unit mass of liquid 
injected, and the residual water in the reservoir has a much lower temperature. The 
latter procedure thus results in the extraction of a much greater fraction of the thermal 
energy stored in the rock. 

We are grateful for discussions with John Hinch and for the comments of the 
referees. S.F. would like to thank the NERC and GeoScience Ltd. for a CASE 
studentship. 
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